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Introduc;on	 B.A.,	UCSB	
M.S.	and	Ph.D.,	University	of	Nevada,	Reno	
	
Regional	Climatologist,	NOAA	WRCC	
	
Research	Interests:	
•  Climate	monitoring	and	analysis	of	historic	

records	
•  California	precipita;on	extremes	and	

atmospheric	rivers	
•  Short-dura;on,	high	intensity	rainfall	
•  Post-fire	debris	flows	and	shallow	landslides		
•  Precipita;on	variability	and	water	resources	
•  Communica;on	of	climate	informa;on	
•  Developing	usable	climate	science	
	

Hiking	in	Santa	Ynez	Mountains	



Ventura	County	faces	many	climate-related	
issues	(we	are	only	discussing	1-4):	

1.   Temperature	changes	
2.   PrecipitaEon	changes	
3.   Flood	hazard	changes	
4.   Changes	in	wildfire	characterisEcs	
5.   Surface	water/groundwater	changes	
6.   Sea	level	rise	

Ozena,	photo:	G.	McCurdy	WRCC	
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Outline	

1.   Temperature	changes	in	model	simulaEons	
2.   PrecipitaEon:	ComplexiEes	and	

representaEons	in	model	simulaEons	
3.   High	intensity	rainfall	and	flash	flooding	
4.   Wildfire	in	a	changing	climate	
5.   Summary	

Ozena,	photo:	G.	McCurdy	WRCC	
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Temperature	
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Historic		

Maximum	temperature	

Ventura	River	Watershed	–	“business	as	usual”	(RCP	8.5)	
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Source:	CalAdapt	



Minimum	temperature	

7	

Ventura	River	Watershed	–	“business	as	usual”	(RCP	8.5)	

Historic		
Source:	CalAdapt	



Precipita;on	
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Precipita;on	

Ventura	River	Watershed	–	“business	as	usual”	(RCP	8.5)	

Historic		 Projected		

Source:	CalAdapt	



Coefficients	of	Varia;on,	Water	Year	1951-2008	

More	interannual	
	variability	

Less	interannual	
	variability	

S.	CA	Exhibits	high	precipita;on	variability	

Deenger	et	al.	2011,	Water	
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S.	CA	has	some	of	highest	3-day	precipita;on	totals	in	US!	

Largest	3-day	storm	totals	in	>30	year	weather	staEon	records	

Ralph	&	De-nger,	BAMS,	2012	

RCats	3-4:	92%	due	to	
Atmospheric	Rivers	
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Atmospheric	Rivers	
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Source:	CIMSS	hgp://tropic.ssec.wisc.edu/real-;me/mimic-tpw/global/main.html	



Case	Study:	Santa	Ynez	River	Basin	

13	Oakley	et	al.	2018	JHRS	



Wet	and	Dry	Seasons	

Basin	Index	

14	Oakley	et	al.	2018	JHRS	



Wet	and	Dry	Seasons	

Basin	Index	
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Extreme	events:	>90th	percen;le	in	a	sta;on	record		

Oakley	et	al.	2018	JHRS	



Wet	and	Dry	Seasons	

Basin	Index	
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≥4	extreme	events:	WET	
≥2	extreme	events:	NORMAL	to	WET	
0-1	extreme	events:	DRY	to	NORMAL	
~75%	extreme	events	associated	with	AR	

number	of	extreme	events	



Models	vary	in	depic;on	of	S.	CA	precipita;on	changes			

Pierce	et	al.	2018,	CA	4th	Assessment	

Change	in	average	precipita;on	2070-2100	rela;ve	to	1950-2005	from	10	models	

Mi;ga;on	efforts	(RCP	4.5)	 Business-as-usual	(RCP	8.5)	
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Decrease	in	Number	of	Precipita;on	Days	

Pierce	et	al.	2013,	J.	Climate;	Polade	et	al.	2014,	Nature	Sci.	Rep.		

Future	period:	2060-2069	Baseline	period:	1985-1994	

As	an	example,	we	will	es;mate	350	dry	days	per	year	for	Ventura	
Thus,	all	precipita;on	falls	in	~15	days	(365-350	=	15)	
A	2-3%	change	(shown	above)	would	mean	7-10	less	precipita;on	days	
For	S.	CA,	projec;ons	show	same	amount	(or	more)	precipita;on	
If	comes	in	fewer	days,	achieved	through	stronger	storms,	greater	moisture	transport	
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Role	of	Atmospheric	Rivers	

Espinoza	et	al.	2018	GRL	

AR	that	impacted	S.	CA	on	Feb	17-18	2017	
•  20-50%	increase	in	frequency	of	

AR	condi;ons	along	US	West	
Coast	(across	mul;ple	studies)	

	
•  10-30%	increase	in	strength	of	

ARs	(across	mul;ple	studies)	
	
•  60%	increase	in	AR	frequency,	

20%	increase	in	strength	at	
southern	mid-la;tudes	

	
•  10%	global	decrease	in	AR	

ac;vity	

Studies	suggest	fewer,	but	stronger	and	longer	dura;on	ARs	for	southern	CA	
Poten;al	for	increase	of	individual	years	with	many	ARs,	small	change	in	average	number	
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Reduc;on	in	snowpack	

Espinoza	et	al.	2018	GRL	

Baseline	1981-2000					Future	period	2081-2100					Based	on	business-as-usual	scenario	

Reich	et	al.	2018:	Climate	Change	in	the	Sierra	Nevada,	UCLA	Report	 20	

64%	decrease	in	Snow	
Water	Equivalent	by	

end	of	century	



High	Intensity	Rainfall	and	Flash	Flooding	

Post-fire	debris	flow	in	Camarillo	Springs	12	December	2014	21	



High	intensity	precipita;on	characteris;c	of	S.	CA	

Oakley	et	al.	2018,	Earth	InteracOons	
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Event Counts Exceeding Threshold

Study	period:	1995-2016	
	
15	mm/h	~	0.6	in/h	
	
60-70%	of	events	
associated	with	
atmospheric	rivers	(ARs)	
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Future	Hourly	Precipita;on	Extremes	

Prein	et	al.	2017,	Nature	Climate	Change		

For	Dec-Jan-Feb	
	
Based	on	business-as-
usual	(RCP	8.5)	
scenario	
	
~2-3x	more	likely	to	
exceed	top	0.05%	of	
historic	hourly	precip.	
in	warmer	climate	in	
S.	CA	
	

%	change	in	exceedance	of	top	0.05%	hourly	precip.	in	future	climate		
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Post-fire	debris	flows	

Oakley	et	al.	2018,	NHESS	

12	UTC	(4	am	PST)	9	Jan	2018	

NCFR		
Breaks	into	pieces	
upon	landfall	

Thomas	burn	
area		

NCFR	is	a	band	of	
intense	rainfall	
along	a	cold	front	

approximate	
Eme	of	
debris	flow	

Montecito	debris	flow.	Photo:	Ventura	County	Air	Unit	

•  15-minute	precipita;on	rate	best	predictor	of	post-fire	
debris	flow	ac;vity	

•  Typically	associated	with	small	(mesoscale)	features,	can	
pose	challenge	to	weather	models	and	not	really	
addressed	in	climate	models	
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Wildfire	

Thomas	Fire,	Dec	2017	25	



Many	factors	influence	wildfire	ac;vity	

•  Increased	populaEon	in	wildland	
urban	interface	(WUI)	

	
Other	factors:	
•  Drought/insect	infesta;ons	
•  Invasive	species	
•  Altered	species	assemblages	
Which	can	be	associated	with:	
•  Warmer	temperatures	(especially	

at	night)	
•  Increased	evapotranspira;on	
•  Increased	frequency/magnitude	of	

drought	

Radeloff	et	al.	2018,	PNAS	

Change	in	WUI		
since	1990	
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Important	to	look	REGIONALLY	in	CA	

•  Southern	CA	shrublands	
“igni;on	limited”	ecosystem	

	
•  Unlikely	climate	change	will	

shis	towards	more	fire-prone	
(already	fire-prone	following	
dry	season)	

	
•  Lengthened	fire	season	

possible	
	
•  Anthropogenic	factors	key	in	

this	area	

Chaparral	in	Transverse	Ranges		

Change	in	WUI		
since	1990	

Keeley	and	Syphard	2017,	IJWF	 27	



Climate	change	and	Santa	
Ana	winds	

Guzman-Morales	2018,	dissertaOon	UCSD/SIO	

•  Reduc;on	of	Santa	Ana	wind	
ac;vity	~14-22%	of	seasonal	
average	

	
•  Decrease	of	extreme	Santa	Ana	

ac;vity	25-45%	
	
•  Decreases	greatest	in	“shoulder	

season”	events	(Sept/Oct	and	Apr/
May)	

	
•  Narrowing	of	Santa	Ana	window	

may	favor	Nov-Dec-Jan	fire	
season?	
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Case	Study:	Thomas	Fire,	Dec	2017-Jan	2018	
•  Prolonged	drought	

dessicated	vegeta;on;	
ample	fuels	

•  Some	of	area	hadn’t	
burned	since	1960s	

•  One	of	driest	starts	to	
water	year	on	record	

•  Intense/prolonged	Santa	
Ana	event	

•  Older	fuels	burned	at	high	
intensity;	increased	debris	
flow	suscep;bility	

•  High	intensity	rainfall	
event	

Thomas	burn	area	from	Camino	Cielo	

Change	in	WUI		
since	1990	
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In	summary…	
•  High	confidence	in	increasing	temperatures	for	region	

–  Drives	evapora;ve	demand,	key	component	of	“drying”	
•  Uncertainty	and	model	disagreement	on	precipita;on,	

likely	due	to	dependence	on	small	number	of	events	
•  Tendency	toward	fewer,	more	intense	storms	and	

prolonged	dry	periods	
•  Hypothesize	increased	frequency	of	short-dura;on	(≤1	h),	

high-intensity	precipita;on	events	but	currently	lack	info	
•  Poten;al	for	increased	length/shis	of	fire	season	due	to	

longer	dry	periods	
•  Southern	CA	remains	“igni;on	limited”	in	changing	climate	
•  Climate	change	enables	wildfires,	weather	and	human	

ac;vity	drive	them	
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NASA	astronaut	Randy	Bresnik	photographed	the	Southern	
California	plumes	of	smoke	on	5	Dec	2017	aboard	the	ISS		

Thank	you!		
	
																					Ques;ons?	

Contact:	
Nina	Oakley	
nina.oakley@dri.edu	

@WRCCclimate	
@CnapRisa	
@CW3E_Scripps	
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Climate Center!



References	
CalAdapt: https://cal-adapt.org/ 
 
California 4th Climate Assessment Statewide Summary Report 
http://www.climateassessment.ca.gov/state/docs/20180827-StatewideSummary.pdf 
 
Dettinger, M. D., Ralph, F. M., Das, T., Neiman, P. J., & Cayan, D. R. (2011). Atmospheric rivers, floods and the water 
resources of California. Water, 3(2), 445-478. https://www.mdpi.com/2073-4441/3/2/445/htm 
 
Espinoza, V., Waliser, D. E., Guan, B., Lavers, D. A., & Ralph, F. M. (2018). Global Analysis of Climate Change Projection 
Effects on Atmospheric Rivers. Geophysical Research Letters, 45(9), 4299-4308. 
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2017GL076968 
 
Guzman-Morales, J. (2018). Santa Ana winds of southern California: Historical variability and future climate projections. 
Dissertation, UC San Diego. https://cloudfront.escholarship.org/dist/prd/content/qt6hm499nj/qt6hm499nj.pdf?t=pf25kz 
 
Keeley, J. E., & Syphard, A. D. (2017). Different historical fire–climate patterns in California. International Journal of Wildland 
Fire, 26(4), 253-268 
https://www.researchgate.net/profile/Alexandra_Syphard/publication/315875417_Different_historical_fire-
climate_patterns_in_California/links/5a6206500f7e9b6b8fd420fb/Different-historical-fire-climate-patterns-in-California.pdf 
 
Oakley, N. S., Cannon, F., Boldt, E., Dumas, J., & Ralph, F. M. (2018). Origins and variability of extreme precipitation in the 
Santa Ynez River Basin of Southern California. Journal of Hydrology: Regional Studies, 19, 164-176. 
https://www.sciencedirect.com/science/article/pii/S2214581818300624 
 
Oakley, N. S., Lancaster, J. T., Hatchett, B. J., Stock, J., Ralph, F. M., Roj, S., & Lukashov, S. (2018). A 22-year climatology 
of cool season hourly precipitation thresholds conducive to shallow landslides in California. Earth Interactions, 22(14), 1-35. 
https://journals.ametsoc.org/doi/pdf/10.1175/EI-D-17-0029.1 
 
Oakley, N. S., Cannon, F., Munroe, R., Lancaster, J. T., Gomberg, D., and Ralph, F. M.: Brief Communication: 
Meteorological and climatological conditions associated with the 9 January 2018 post-fire debris flows in Montecito and 
Carpinteria California, USA, Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2018-179, in review, 
2018. https://www.nat-hazards-earth-syst-sci-discuss.net/nhess-2018-179/ 
 
	
	
	
	
	

32	



References	
 
Pierce, D. W., Cayan, D. R., Das, T., Maurer, E. P., Miller, N. L., Bao, Y., ... & Franco, G. (2013). 
The key role of heavy precipitation events in climate model disagreements of future annual 
precipitation changes in California. Journal of Climate, 26(16), 5879-5896. 
https://journals.ametsoc.org/doi/pdf/10.1175/JCLI-D-12-00766.1 
 
Polade, S. D., Pierce, D. W., Cayan, D. R., Gershunov, A., & Dettinger, M. D. (2014). The key role 
of dry days in changing regional climate and precipitation regimes. Scientific reports, 4, 4364. 
https://www.nature.com/articles/srep04364 
 
Prein, A. F., Rasmussen, R. M., Ikeda, K., Liu, C., Clark, M. P., & Holland, G. J. (2017). The future 
intensification of hourly precipitation extremes. Nature Climate Change, 7(1), 48. 
https://www.nature.com/articles/nclimate3168 
 
Ralph, F. M., & Dettinger, M. D. (2012). Historical and national perspectives on extreme West Coast 
precipitation associated with atmospheric rivers during December 2010. Bulletin of the American 
Meteorological Society, 93(6), 783-790. 
https://journals.ametsoc.org/doi/full/10.1175/BAMS-D-11-00188.1 
 
Radeloff, V. C., Helmers, D. P., Kramer, H. A., Mockrin, M. H., Alexandre, P. M., Bar-Massada, A., ... 
& Stewart, S. I. (2018). Rapid growth of the US wildland-urban interface raises wildfire risk. 
Proceedings of the National Academy of Sciences, 115(13), 3314-3319. 
http://www.pnas.org/content/pnas/115/13/3314.full.pdf 
 
Reich, KD, N Berg, DB Walton, M Schwartz, F Sun, X Huang, and A Hall, 2018: “Climate Change in 
the Sierra Nevada: California’s Water Future.” UCLA Center for Climate Science. 
https://www.ioes.ucla.edu/wp-content/uploads/UCLA-CCS-Climate-Change-Sierra-Nevada.pdf 
	

	
	
	

	
	

33	


