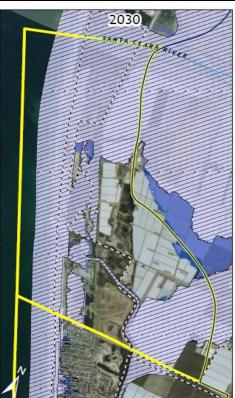
City of Oxnard LCP

- Required by the California Coastal Act (1976)
- Community's blue print for managing official Coastal Zone
 - Land Use
 - Public Access
 - Recreation

What is required?

- Achieve consistency with the Coastal Act
 - Use best available science
 - Minimize coastal hazards through planning and development standards
 - Maximize protection of public access, recreation, and sensitive coastal resources
 - Maximize agency coordination and public participation
 - NEW! Anticipate and adapt to sea level rise.


Why an LCP Update

- Reflect current best practices for coastal planning
- Coastal Commission LCP Update Guide (2007)
 - Part 1 Updating LCP Land Use Plan Policies
 - Part 2 Updating LCP Implementation Plan Procedures
- Coastal Commission Sea Level Rise Policy Guidance (August 2015)

- Centered Around Sea Level Rise
- Four Coastal Hazards:
 - Monthly High Tide Inundation
 - Beach and Dune Erosion
 - Coastal Storm Wave (El Nino event)
 - Coastal Storm Flood (El Nino event)
 - Combined Hazards (occurring at same time)
- Four Planning Areas and Area 5: Port Hueneme and County Areas
 - McGrath/Mandalay
 - Oxnard Shores
 - Cl Harbor
 - Ormond Beach

- Centered Around Sea Level Rise
- Coastal Hazards:
 - Monthly High Tide Inundation
 - Beach and Dune Erosion
 - Coastal Storm Wave (El Nino event)
 - Coastal Storm Flood (El Nino event)
 - Combined Hazards (occurring at same time)
- Tsunami
- Storm Drain vulnerability

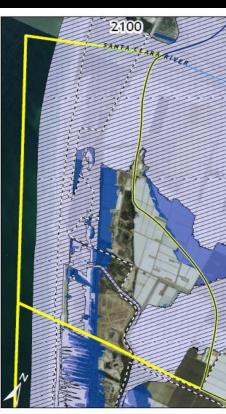


Figure 1.5 - Combined Hazard Zones for Planning Area 1: McGrath / Mandalay Beach

Coastal Zone Boundary

City Boundary

City of Oxnard LCP Planning Area

Adjacent Jurisdictions

Existing Conditions-Combined

fincon

Modeling Scenario (2030)

Existing Conditions

Low (2.3" SLR)

Moderate (5.2" SLR)

High (8.0" SLR)

Modeling Scenario (2060)

Existing Conditions

Low (7.4" SLR)

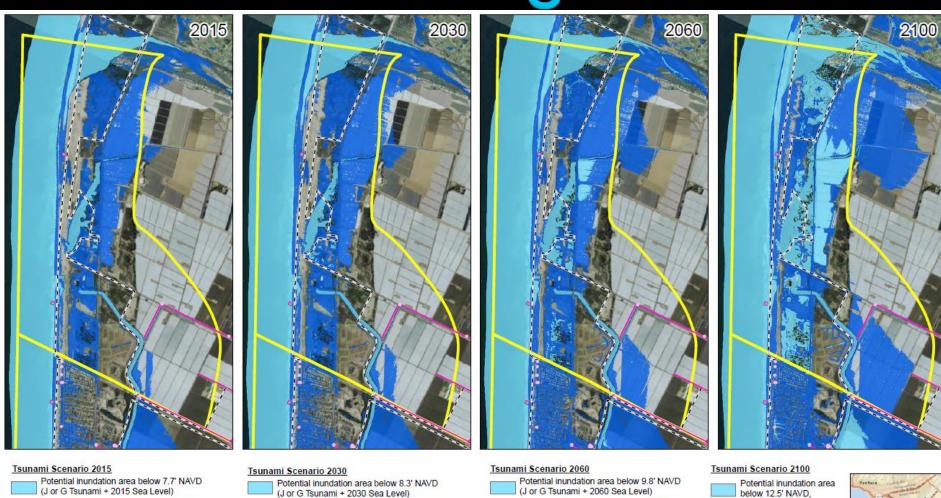
Moderate (16.1" SLR)

High (25.3" SLR)

Modeling Scenario (2100)

Existing Conditions
Low (17.1" SLR)

Low (17.1" SLR)


Moderate (36.5" SLR)

Moderate (36.5" SLR

High (58.1" SLR)

Modeling results from Coastal Resilience Ventura (ESA PWA, 2013)

(G Tsunami + 2015 Sea Level) City Boundary City of Oxnard LCP Planning Area Adjacent Jurisdictions Storm Drain Inlet/Catch Basin

Storm Drain Pipe/Open Channel

Potential inundation area below 14.6' NAVD

Abbreviations: J = 2011 Japanese Tsunami; G = Goleta 2 Landslide Tsunami

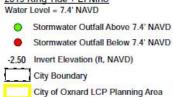
Potential inundation area below 15.3' NAVD

(G Tsunami + 2030 Sea Level)

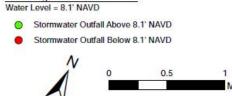
Figure 3. Storm Drain Sea Level Rise Vulnerability Mapping for Planning Area 1: McGrath / Mandalay Beach

Potential inundation area below 16.7' NAVD

(G Tsunami + 2060 Sea Level)


(J or G Tsunami +

Potential inundation area below 19.5' NAVD


2100 Sea Level)

(G Tsunami + 2100 Sea Level)

Adjacent Jurisdictions

2060 King Tide + El Nino + SLR

Water Level = 9.5' NAVD

Stormwater Outfall Above 9.5' NAVD

Stormwater Outfall Below 9.5' NAVD

2100 King Tide + El Nino + SLR
Water Level = 12.3' NAVD
Stormwater Outfall
Above 12.3' NAVD
Stormwater Outfall

Stormwater Outfall
 Below 12.3' NAVD

Figure 2. Storm Drain Sea Level Rise Vulnerability Mapping for Planning Area 2: Oxnard Shores

Next Steps – Resiliency Planning

- Update Coastal Land Use Plan
 - Develop policies accordingly that include adaptation
 - Integrate information from other agencies
- LCP Planning Area Vulnerability Assessments
 - Adaptation Strategies
- Economic Analysis

Next Steps – Resiliency Planning

- Update Coastal Land Use Plan
 - Develop policies accordingly that include adaptation
 - Integrate information from other agencies
- LCP Planning Area Vulnerability Assessments
 - At Risk Facilities
 - Adaptation Strategies
 - Policy Needs
 - Land Use Changes
 - Economic Impacts